Laser-Induced Solid-Phase Doped Graphene

Insung Choi,† Hu Young Jeong,§ Dae Yool Jung,‡ Myunghwan Byun,† Choon-Gi Choi,† Byung Hee Hong,† Sung-Yool Choi,‡,* and Keon Jae Lee†,*

†Department of Materials Science and Engineering and ‡Department of Electrical Engineering and Graphene Research Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea, §UNIST Central Research Facilities (UCRF) and School of Mechanical and Advanced Materials Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798, Republic of Korea, †Creative Research Center for Graphene Electronics, Electronics and Telecommunications Research Institute (ETRI), Daejeon 305-700, Republic of Korea, and †Department of Chemistry, Seoul National University, Seoul 151-747, Republic of Korea

ABSTRACT There have been numerous efforts to improve the performance of graphene-based electronic devices by chemical doping. Most studies have focused on gas-phase doping with chemical vapor deposition. However, that requires a complicated transfer process that causes undesired doping and defects by residual polymers. Here, we report a solid-phase synthesis of doped graphene by means of silicon carbide (SiC) substrate including a dopant source driven by pulsed laser irradiation. This method provides in situ direct growth of doped graphene on an insulating SiC substrate without a transfer step. A numerical simulation on the temperature history of the SiC surface during laser irradiation reveals that the surface temperature of SiC can be accurately controlled to grow nitrogen-doped graphene from the thermal decomposition of nitrogen-doped SiC. Laser-induced solid-phase doped graphene is highly promising for the realization of graphene-based nanoelectronics with desired functionalities.

KEYWORDS: solid-phase synthesis · nitrogen-doped graphene · laser · silicon carbide

Graphene, a monolayer of carbon atoms arranged to form a two-dimensional honeycomb lattice, has unique physical properties such as an ambipolar electric field effect, anomalous quantum hall effect, and massless relativistic carriers. In addition, because of its high mobility of charge carriers (200000 cm² V⁻¹ s⁻¹), graphene-based electronic devices have been considered promising candidates for postsilicon electronics. In order to construct logic circuits based on graphene field effect transistors, it is inevitably desirable to realize both p-type and n-type conduction of graphene channels. The chemical doping of heterogeneous atoms into the graphene lattice could be an effective approach to tailor the electronic properties of graphene.

Both theoretical and experimental investigations have revealed that the chemical properties of doped graphene can considerably change its physical and chemical properties, such as dopant density and bonding conformation. Many research groups have been synthesizing and characterizing doped graphene using chemical vapor deposition (CVD), however, this method requires a complicated transfer process, which inevitably leads to undesired doping and defects. Alternative methods to synthesize doped epitaxial graphene (EG) by supplying nitrogen gas and ion implantation were reported, providing direct growth of doped graphene on an insulating substrate without any additional transfer procedure. However, the extremely high temperature process in the furnace limits its compatibility with industrial semiconductor applications. Therefore, a simple and robust doping methodology to realize graphene-based electronic devices with excellent reliability and performance is highly desirable.

Herein, we introduce a synthesis method of laser-induced solid-phase doped graphene using SiC substrate including a solid dopant source. Laser-induced graphene by localized heating has been recently reported using excimer laser technology, which is widely commercialized in GaN lift-off and low temperature polycrystalline silicon (LTPS). The novel synthesis of solid-phase doped graphene by laser irradiation provides in situ direct growth of doped graphene on an insulating substrate without a complicated transfer process. Solid-phase
doping can provide precise controllability of doping concentration compared with gas-phase doped graphene. We successfully synthesized nitrogen-doped graphene (N-doped graphene) on an N-doped SiC substrate and characterized it by Raman, high-resolution transmission electron microscopy (HRTEM), and X-ray photoelectron spectroscopy (XPS). In addition, a numerical simulation was performed to understand thermal behavior on the SiC surface during laser irradiation (30 ns). Our simulation results, based on optimized experimental conditions, show that the growth temperature of laser-induced graphene is similar to the melting temperature of SiC (3100 K). This indicates that a higher thermal energy is required to decompose Si–C bonds, compared with the classical thermal decomposition of SiC.

Through systematic analysis of the G band shift in Raman spectra, it was confirmed that the doping concentration of the graphene can be readily controlled by changing the dopant concentration of the SiC substrate. The obtained results demonstrate that the solid dopant source of the SiC substrate could be incorporated into the graphene lattice by laser irradiation, which may open up the potential for designing solid-phase doping to realize graphene-based nanoelectronics.

RESULTS AND DISCUSSION

Figure 1a describes a schematic of the synthesis method for N-doped graphene on N-doped SiC by pulsed laser irradiation. Hexagonal SiC materials have a wide bandgap of ~3.2 eV and thermal conductivity of 490 W/m·K. Therefore, ultraviolet (UV) wavelength and high energy density are required to generate heat on the SiC surface through the light absorption process. A XeCl (λ = 308 nm, pulse duration ~30 ns) excimer laser system with beam homogenizer and 8× projection lens was utilized to focus the UV light beam on the SiC specimen through a shadow mask patterned with a square hole (see the Supporting Information for details of laser system, Figure S1). To avoid a reaction with oxygen, the laser irradiation was performed in a vacuum condition (~1 × 10⁻6 Torr) with average fluence (i.e., laser energy per unit area) of 1124 mJ/cm². We confirmed that 600 pulses (10 Hz, 60 s) were needed to evaporate Si atoms for the formation of graphene on the SiC, owing to the short pulse duration of 30 ns (Figure S2 in the Supporting Information). To avoid a reaction with oxygen, the laser irradiation was performed in a vacuum condition (~1 × 10⁻6 Torr) with average fluence (i.e., laser energy per unit area) of 1124 mJ/cm². We confirmed that 600 pulses (10 Hz, 60 s) were needed to evaporate Si atoms for the formation of graphene on the SiC, owing to the short pulse duration of 30 ns (Figure S2 in the Supporting Information). To avoid a reaction with oxygen, the laser irradiation was performed in a vacuum condition (~1 × 10⁻6 Torr) with average fluence (i.e., laser energy per unit area) of 1124 mJ/cm². We confirmed that 600 pulses (10 Hz, 60 s) were needed to evaporate Si atoms for the formation of graphene on the SiC, owing to the short pulse duration of 30 ns (Figure S2 in the Supporting Information).

Raman spectroscopy has been widely used as a powerful and nondestructive technique to characterize the structure and electronic properties of carbon-based materials. Figure 1b shows a Raman spectrum of N-doped graphene grown on a N-doped SiC substrate.
4H-SiC with dopant concentration, \(n = 2.2 \times 10^{18} \text{ cm}^{-3} \). Three representative bands, including the defect-induced D band, in-plain vibrational G band, and two-phonon scattered 2D band, are clearly observed at 1361, 1584, and 2709 cm\(^{-1}\), respectively.\(^{16,37,38}\) The 2D band of the multilayer N-doped graphene grown on Si-terminated surface by laser irradiation was fitted with single Lorentzian having a full width at half-maximum (fwhm) of \(\sim 60 \text{ cm}^{-1} \), in agreement with the previous report.\(^{20}\) The inset of Figure 1b represents the Raman spectrum of the 4H-SiC substrate showing characteristic peaks at 1518 and 1711 cm\(^{-1}\). For more clearly investigating crystallographic features of the multilayer N-doped graphene grown on the 4H-SiC, high-resolution transmission electron microscopy (HRTEM) analysis was performed. Figure 1c shows the multilayer (4 to 5) graphene with some defective regions observed along the [11\(\bar{2} 0 \)] SiC zone axis. The average interlayer distance is about 0.38 nm between graphene layers.

Figure 2a compares the C 1s XPS spectra of pristine (i, top panel) and N-doped graphene (ii, bottom panel) from undoped and highly N-doped SiC substrate \((n = 7.4 \times 10^{18} \text{ cm}^{-3}) \), respectively, to characterize their atomic composition and chemical bonding. The solid and dotted lines indicate the experimental data and the sum of the curve-fitted components, respectively. The C 1s spectrum of pristine graphene can be primarily characterized by three major peaks: a carbon–carbon peak at 284.6 eV corresponding to C=C in aromatic rings indicating sp\(^2\) carbon bonding; shoulder peaks at 283.8 and 285.5 eV corresponding to Si–C, and buffer layer that is carbon-rich layer between graphene and SiC substrate.\(^{31,39}\) The C 1s spectrum of N-doped graphene can be mainly characterized by four peaks at C=C, Si–C, buffer layer, and C–N bonds, respectively, showing a broader range compared to the pristine graphene. The small peak at 285.6 eV indicates the binding energy corresponding to either sp\(^2\)-C or sp\(^3\)-C with nitrogen atoms.\(^{16}\) In clear comparison with the pristine graphene, fwhm at 284.6 eV of the N-doped graphene increases from 1.0 to 1.24 due to the doping effect.\(^{16,18}\) These results from the XPS C 1s spectra verify that N-doped graphene was successfully synthesized by laser irradiation.

Figure 2b demonstrates N 1s spectra of pristine (no signal) and N-doped graphene. Typically, for N-doped graphene, three components of C–N bonding correspond to pyridinic-N (nitrogen bonded to two carbons, 398.1 – 399.3 eV), pyrrolic-N (nitrogen included in pentagon ring, 399.8 – 401 eV), and graphitic-N (nitrogen bonded to three carbons, 401.1 – 402.7 eV).\(^{2,11,16,32}\) Therefore, the N 1s peak located at 398.5 eV as shown in Figure 2b (ii, bottom panel) corresponds to pyridinic-N bonding. To manifest supply of nitrogen atoms from the substrate, XPS analysis was also conducted on the bare substrate prior to laser irradiation. Figure 53 in the Supporting Information shows XPS spectra on the highly N-doped SiC substrate. Compared to the N 1s spectrum of N-doped graphene, the binding energy of 397.7 eV describes Si–N–C composition. Velez-Fort et al. reported a method to grow in situ N-doped EG on 4H-SiC by exposing the substrate to nitrogen gas during the graphene growth.\(^{16}\) In addition to nitrogen atoms incorporated in the graphene lattice, such as pyridinic, pyrrolic, and graphitic configurations, the presence of defects such as dangling bonds in the buffer layer facilitates the incorporation of the nitrogen atoms through formation of Si–N–C bonds. They assigned the binding energy of 397.7 eV to Si–N–C chemical states, showing a good agreement with our N 1s peak position from the substrate. The atomic concentration of nitrogen on the highly N-doped substrate was \(\sim 0.7\% \), while the nitrogen concentration was reduced to \(\sim 0.6\% \) in the graphene lattice, as determined by XPS. This means that nitrogen atoms were marginally evaporated at the same time with sublimation of Si atoms by laser irradiation. Therefore, the XPS results indicate that the solid dopant sources of SiC substrate could be incorporated in the graphene lattice.

Figure 3a shows the Raman spectra of N-doped graphene on N-doped 4H-SiC produced by varying fluence with a step change of approximately 7% using a controllable energy attenuator. The characteristic 2D band of graphene is not observed at the low fluence of 1045 mJ/cm\(^2\) (red line) because most of the thermal energy is diffusing into the SiC substrate due to its high thermal conductivity.\(^{15}\) The G and 2D bands are clearly visible at the fluences of 1124 (green line) and 1196 mJ/cm\(^2\) (blue line), respectively. However, a decay of the 2D band with an increase of the D band is remarkably observed at the high fluence of 1301 mJ/cm\(^2\) (cyan line).
In order to understand the growth temperature for N-doped graphene corresponding to laser fluence (i.e., thermal energy), a numerical simulation was performed with reference to the previous articles of Im and Fogarassy.24–27 Figure 3b presents a numerical simulation of thermal behavior (i.e., heat generation and cooling) corresponding to various fluence conditions. Thermal and optical parameters used in this simulation are described in the Methods.40,41 The simulated maximum surface temperatures resulting from a single pulse (violet line) are 2896 K at 1045 mJ/cm² (red line), 3068 K at 1124 mJ/cm² (green line), 3226 K at 1196 mJ/cm² (blue line), and 3460 K at 1301 mJ/cm² (cyan line). Violet line shows laser temporal data. (c) The simulated maximum surface temperatures and Raman results on the SiC surface corresponding to laser fluences such as 1045, 1124, 1196, and 1301 mJ/cm².

Although one pulse can deposit high thermal energy on the SiC surface, we experimentally confirmed in the Raman spectra that hundreds of irradiations are required to form the graphene lattice, owing to the short pulse duration.20,21

The simulated maximum surface temperature and Raman results corresponding to laser fluences are summarized in Figure 3c. The N-doped graphene was successfully synthesized with fluences of 1124 and 1196 mJ/cm², while no graphitized carbon was observed at the low fluence of 1045 mJ/cm². On the other hand, a surface temperature of over 3460 K (cyan line) at 1301 mJ/cm² causes damage (i.e., ablation of carbon) on the SiC surface. From the experimental and simulation results, we propose both the proper thermal energy (i.e., 1124 or 1196 mJ/cm²) and the number of irradiations (i.e., 600 pulses) that are required to synthesize graphene on SiC by pulsed laser irradiation.

Intensive studies of doped graphene grown by CVD method have presented the G band shift as a fingerprint of doping since the incorporation of heteroatoms breaks the symmetry of the graphene lattice.32–35 We carried out a systematic Raman analysis of N-doped graphene grown on a hexagonal SiC surface with different dopant concentrations (Figure 4). In this work, we used four different substrates: undoped (n < 1 × 10¹⁶ cm⁻³), 6H-SiC, low-doped (n = 9 × 10¹⁷ cm⁻³), 6H-SiC, mid-doped (n = 2.2 × 10¹⁸ cm⁻³), 4H-SiC, and high-doped (n = 7.4 × 10¹⁸ cm⁻³) 4H-SiC. By utilizing a micro-Raman system with 514.5 nm excitation, we investigated all the samples over the same positions (i.e., central areas of the samples). The average values of the G band position represented by star labels were blueshifted with respect to the dopant concentrations of four different substrates. The G band position of the pristine graphene exhibits between 1581 and 1582.5 cm⁻¹, whereas N-doped graphene grown on the low-doped 6H-SiC presents a slight blueshift between 1582.5 and 1584 cm⁻¹. Figure S5 in the Supporting Information shows the representative Raman spectra of the pristine and the N-doped graphene.

In order to investigate the relationship between the G band shift and the dopant concentration of SiC, we systematically studied the G band positions of N-doped graphene from mid-doped (n = 2.2 × 10¹⁸ cm⁻³) and high-doped (n = 7.4 × 10¹⁸ cm⁻³) 4H-SiC. The G band position of N-doped graphene grown on the high-doped 4H-SiC shows a noticeable blueshift compared to results on the mid-doped 4H-SiC. This shift originates from an increased structural disorder due to the disruptions in the sp² carbon honeycomb lattice by the incorporation of nitrogen atoms.42 In addition, we examined the characteristic feature of the laser-induced graphene grown on both Si and C faces. The systematic analysis of pristine and N-doped graphene (i.e., grown on low-doped SiC) confirms that G band peaks of graphene grown from
and N-doped graphene, undoped (with substrate and called substrate. Hence, this layer is electronically coupled covalently bonding down to the Si atoms of the substrate without an additional transfer procedure. Results of Lee and our group, laser-induced graphene on SiC substrate has a different interface layer and growth mechanism, compared to thermally grown EG, due to extremely short heat deposition of 30 ns. In addition, Ferralis et al. reported that a blueshift of the G band by compressive strain monotonically increases as the annealing time prolongs, such as several tens of minutes. In the case of pulse laser irradiation, we showed that heat deposition of 1 pulse was ∼30 ns and completely cooled down under 1 μs in the simulated temperature data, as shown in the Figure 3b. Therefore, from the analysis results, we exclude an effect of compressive strain from the substrate regarding to G band shift because laser-induced graphene has different condition of interface layer compared to thermally grown EG.

CONCLUSIONS

In summary, we report a novel synthesis of laser-induced N-doped graphene on hexagonal SiC which includes a solid dopant source. This method provides the direct growth of doped graphene on an insulating substrate without an additional transfer procedure. The XPS analysis confirms that the C–N bonding conformation of the N-doped graphene was pyridinic-N type. Systematic analysis of the G band shift in the Raman spectra suggests that solid-phase doping can provide precise controllability of doping concentration by simply changing the dopant concentration of SiC. Furthermore, the G band shift depends dominantly on the dopant concentration of the SiC substrate. Simulated temperature history indicates that heat generation on the SiC by short pulse of laser irradiation is high enough to synthesize N-doped graphene. We are currently exploring the new intermediate phase of laser-induced N-doped graphene on SiC to clarify the growth mechanism by extremely short heat deposition. This work is expected to provide a solid-phase doping strategy with excellent controllability, which is primarily used in advanced Si CMOS technology.

METHODS

Sample Preparation for Laser Irradiation. To synthesize pristine and N-doped graphene, undoped (n < 1 × 10^{16} cm^{-2}) and low-doped (n = 9 × 10^{17} cm^{-2}) 6H-SiC (0001) wafers with chemical mechanical polishing (CMP, RMS ≤ 1 nm) were prepared and supplied by Prof. Won Jae Lee’s group from CMOS technology.

Therefore, their Raman analysis suggests that the laser-synthesized multilayer graphene on Si-terminated surface of SiC are not Bernal-stacked and electronically decoupled. This means no strong compressive strain could be generated from the substrate, but possibly a weak coupling arises. Recently, our group found a new metastable phase transition of amorphous layer on a hexagonal SiC surface as an intermediate phase of graphitization on both Si and C faces rather than surface reconstruction, which might be only discovered by short pulse laser irradiation. From the experimental results of Lee and our group, laser-induced graphene on SiC substrate has a different interface layer and growth mechanism, compared to thermally grown EG, due to extremely short heat deposition of 30 ns. In addition, Ferralis et al. reported that a blueshift of the G band by compressive strain monotonically increases as the annealing time prolongs, such as several tens of minutes. In the case of pulse laser irradiation, we showed that heat deposition of 1 pulse was ∼30 ns and completely cooled down under 1 μs in the simulated temperature data, as shown in the Figure 3b. Therefore, from the analysis results, we exclude an effect of compressive strain from the substrate regarding to G band shift because laser-induced graphene has different condition of interface layer compared to thermally grown EG.

CONCLUSIONS

In summary, we report a novel synthesis of laser-induced N-doped graphene on hexagonal SiC which includes a solid dopant source. This method provides the direct growth of doped graphene on an insulating substrate without an additional transfer procedure. The XPS analysis confirms that the C–N bonding conformation of the N-doped graphene was pyridinic-N type. Systematic analysis of the G band shift in the Raman spectra suggests that solid-phase doping can provide precise controllability of doping concentration by simply changing the dopant concentration of SiC. Furthermore, the G band shift depends dominantly on the dopant concentration of the SiC substrate. Simulated temperature history indicates that heat generation on the SiC by short pulse of laser irradiation is high enough to synthesize N-doped graphene. We are currently exploring the new intermediate phase of laser-induced N-doped graphene on SiC to clarify the growth mechanism by extremely short heat deposition. This work is expected to provide a solid-phase doping strategy with excellent controllability, which is primarily used in advanced Si CMOS technology.

METHODS

Sample Preparation for Laser Irradiation. To synthesize pristine and N-doped graphene, undoped (n < 1 × 10^{16} cm^{-2}) and low-doped (n = 9 × 10^{17} cm^{-2}) 6H-SiC (0001) wafers with chemical mechanical polishing (CMP, RMS ≤ 1 nm) were prepared and supplied by Prof. Won Jae Lee’s group from CMOS technology.

Therefore, their Raman analysis suggests that the laser-synthesized multilayer graphene on Si-terminated surface of SiC are not Bernal-stacked and electronically decoupled. This means no strong compressive strain could be generated from the substrate, but possibly a weak coupling arises. Recently, our group found a new metastable phase transition of amorphous layer on a hexagonal SiC surface as an intermediate phase of graphitization on both Si and C faces rather than surface reconstruction, which might be only discovered by short pulse laser irradiation. From the experimental results of Lee and our group, laser-induced graphene on SiC substrate has a different interface layer and growth mechanism, compared to thermally grown EG, due to extremely short heat deposition of 30 ns. In addition, Ferralis et al. reported that a blueshift of the G band by compressive strain monotonically increases as the annealing time prolongs, such as several tens of minutes. In the case of pulse laser irradiation, we showed that heat deposition of 1 pulse was ∼30 ns and completely cooled down under 1 μs in the simulated temperature data, as shown in the Figure 3b. Therefore, from the analysis results, we exclude an effect of compressive strain from the substrate regarding to G band shift because laser-induced graphene has different condition of interface layer compared to thermally grown EG.

CONCLUSIONS

In summary, we report a novel synthesis of laser-induced N-doped graphene on hexagonal SiC which includes a solid dopant source. This method provides the direct growth of doped graphene on an insulating substrate without an additional transfer procedure. The XPS analysis confirms that the C–N bonding conformation of the N-doped graphene was pyridinic-N type. Systematic analysis of the G band shift in the Raman spectra suggests that solid-phase doping can provide precise controllability of doping concentration by simply changing the dopant concentration of SiC. Furthermore, the G band shift depends dominantly on the dopant concentration of the SiC substrate. Simulated temperature history indicates that heat generation on the SiC by short pulse of laser irradiation is high enough to synthesize N-doped graphene. We are currently exploring the new intermediate phase of laser-induced N-doped graphene on SiC to clarify the growth mechanism by extremely short heat deposition. This work is expected to provide a solid-phase doping strategy with excellent controllability, which is primarily used in advanced Si CMOS technology.

METHODS

Sample Preparation for Laser Irradiation. To synthesize pristine and N-doped graphene, undoped (n < 1 × 10^{16} cm^{-2}) and low-doped (n = 9 × 10^{17} cm^{-2}) 6H-SiC (0001) wafers with chemical mechanical polishing (CMP, RMS ≤ 1 nm) were prepared and supplied by Prof. Won Jae Lee’s group from CMOS technology.
Dong-Eui University. Mid-doped (n = 2.2 × 10^{14} \text{cm}^{-3}) and high-
doped (n = 7.4 × 10^{16} \text{cm}^{-3}) 4H-SiC wafers with CMP were
purchased from Cree. These specimens, sized 8 mm × 8 mm, were
then cut from the wafers and cleaned by sequential ultrasonic
baths in acetone, isopropanol alcohol, and deionized water to
remove grease. Pirana solution (mixture of H_{2}SO_{4}/H_{2}O_{2} = 3:1)
were cut from the wafers and cleaned by sequential ultrasonic
process. XPS analysis was carried out using a microfocused monochro-
matic Al Kα excitation with a base pressure of 5 × 10^{-10} Torr (Sigma
Probe, Thermo VG Scientific, Inc.). Cross-sectional TEM samples
were prepared using a focused ion beam (FIB, FEI Quanta 3D) lift
out technique. After Ga-ion milling, the samples were protected
with amorphous carbon coating as a capping layer to preserve the
surface contamination such as adsorbed oxygen. The substrate
temperature was maintained at 600 °C, which is irrelevant to
growth condition of graphene, during laser irradiation.

Characterization: Raman/XPS/TEM. Micro-Raman measurements
with a spot size of about 1 μm were performed at room temperature with LabRaman Aramos (Horiba Jobin Yvon) using Ar ion
laser (514.5 nm) focused on pristine and N-doped graphene by
optical microscope with a 50× objective lens. XPS analysis was carried out using a microfocused monochro-
matic Al Kα excitation with a base pressure of 5 × 10^{-10} Torr (Sigma
Probe, Thermo VG Scientific, Inc.). Cross-sectional TEM samples
were prepared using a focused ion beam (FIB, FEI Quanta 3D) lift
out technique. Prior to Ga-ion milling, the samples were protected
with amorphous carbon coating as a capping layer to preserve the
initial surface integrity. The HRTEM images were taken with JEOL
JEM 2100F with a probe Cs corretor at 200 kV.

Numerical Simulation. The numerical simulation performed in
this study is widely used for the analysis of thermal behavior regarding laser-solid interaction involving heat gen-
eration and cooling at the surface of the irradiated area by light absorption.24–27 Thermal simulation parameters of SiC were
referred to Nilsson’s article and modified to (720(7) – 69) of
thermal conductivity and (1.12 ln (7) – 4) of heat capacity as a
function of temperature, respectively.25 In addition, the reflective index n and k as optical parameters were set to 2.9 and
0.1 at 308 nm.40 Temporal data of our 308 nm XeCl laser, as
referenced to Nilsson’s article and modified to
thermal conductivity and
heat capacity as a
function of temperature, respectively.25 In addition, the reflective index n and k as optical parameters were set to 2.9 and
0.1 at 308 nm.40 Temporal data of our 308 nm XeCl laser, as
referenced to Nilsson’s article and modified to

REFERENCES AND NOTES
2. Katsnelson, M. I.; Novoselov, K. S. Graphene: New Bridge
between Condensed Matter Physics and Quantum Elec-
3. Morozov, S. V.; Novoselov, K. S.; Katsnelson, M. I.; Schedin,
F.; Elias, D. C.; Jaszczak, J. A.; Geim, A. K. Giant Intrins-
ic Carrier Mobilities in Graphene and Its Bilayer. Phys.
Graphene in Silicon-Based Semiconductor Devices. Nature
2011, 479, 338–344.
5, 487–496.
6. Liu, H. T.; Liu, Y. Q.; Zhu, D. B. Chemical Doping of
7. Wang, H. B.; Nayakaligoudar, V. Review on Recent Progress
in Nitrogen-Doped Graphene: Synthesis, Char-
2012, 2, 781–794.
8. Wei, D. C.; Liu, Y. Q.; Wang, Y.; Zhang, H. L.; Huang, L. P.; Yu,
G. Synthesis of N-Doped Graphene by Chemical Vapor
Deposition and Its Electrical Properties. Nano Lett. 2009,
9, 1752–1758.
9. Jin, Z.; Yao, J.; Kittrell, C.; Tour, J. M. Large-Scale Growth and
Characterizations of Nitrogen-Doped Monolayer Gra-
10. Zhao, L. H.; He, R.; Rim, K. T.; Schiros, T.; Kim, K. S.; Zhou,
Gutierrez, C.; Chockalingam, S. P.; Arguello, C. J.; Palova,
L.; et al. Visualizing Individual Nitrogen Dopants in Mono-
Adamchuk, V. K.; Preobrajenski, A. B.; Dudin, P.; Barinov,
A.; Oehzelt, M.; et al. Nitrogen-Doped Graphene: Efficient
2011, 11, 5401–5407.
Synthesis of Nitrogen-Doped Graphene Used in Embedded
1024.
Ahn, J. H.; Kim, P.; Choi, J. Y.; Hong, B. H. Large-Scale Pattern
Growth of Graphene Films for Stretchable Transparent
Balakrishnan, J.; Lei, T.; Kim, H. R.; Song, Y. I.; et al. Roll-to-
Roll Production of 30-Inch Graphene Films for Transparent
15. Song, J.; Kam, F. Y.; Png, R. Q.; Seah, W. L.; Zhou, J. M.;
Lim, G. K.; Ho, P. K. H.; Chua, L. L. A General Method for
Transferring Graphene onto Soft Surfaces. Nat.
Nano
tech
2013, 8, 356–362.
16. Velez-Fort, E.; Mathieu, C.; Pallecchi, E.; Pigneur, M.; Silly,
M. G.; Belkhoua, R.; Marangolo, M.; Shukla, A.; Siriotto,
F.; Ouerghi, A. Epitaxial Graphene on 4H-SiC(0001) Grown
under Nitrogen Fluor: Evidence of Low Nitrogen Dop ing
and High Charge Transfer. ACS Nano 2012, 6, 10893–10900.
17. Wang, Z. J.; Wei, M. M.; Jin, L.; Ning, Y. X.; Yu, L.; Fu,
Q.; Bao, X. H. Simultaneous N-Intercalation and N-Doping of Epi-
taxial Graphene on 6H-SiC(0001) through Thermal Reac-
tions with Ammonia. Nano Res. 2013, 6, 399–408.
18. Velez-Fort, E.; Pallecchi, E.; Silly, M. G.; Bahri, M.; Patriarche,
G.; Shukla, A.; Siriotto, F.; Ouerghi, A. Single Step Fabrication
of N-doped graphene/Si_{x}N_{y}/Si Heterostructures. Nano
Bocquet, F. C.; Kolorcon, J.; Vondracek, M.; Jelink, P.; Svec,
M.; Achieving High-Quality Single-Atom Nitrogen Doping of
Graphene/SiC(0001) by Ion Implantation and Subse-
quent Thermal Stabilization. ACS Nano DOI: 10.1021/
nm502438k.
Munakata, K.; Lu, J.; Geballe, T. H.; Beasley, M. R.; Sinclair,
R.; et al. Laser-Synthesized Epitaxial Graphene. ACS Nano
Hwang, H.; Lee, B. H. Electrical Characteristics of Wrinkle-
Free Graphene Formed by Laser Graphitization of 4H-SiC.
Song, I. S.; Wiener, J. J.; Pao, H. A.; Huang, Y. G.; et al. High-
efficiency, Microscale GaN Light-Emitting Diodes and
Their Thermal Properties on Unusual Substrates. Small
2012, 8, 1643–1649.

